Multi-busbar solar cells and modules: high efficiencies and low silver consumption

نویسندگان

  • Stefan Braun
  • Giso Hahn
  • Robin Nissler
  • Christoph Pönisch
  • Dirk Habermann
چکیده

Ideally, future photovoltaic modules show higher power output without increasing costs during cell production or module interconnection. Today significant losses occur during stringing the cells in a module by using standard 3busbar technology. In this paper an elegant approach for a front side design is discussed by using more busbars than the widely used 3-busbar design for the solar cell front electrode. Simulations demonstrated that the multi-busbar design allows higher cell and module efficiencies compared to a state of the art 3-busbar cell design, and in the same time reduces the amount of silver needed for the front electrode. A conventional full area Al BSF and standard screen printing for the front contact was used for the 6" Cz-Si multi-busbar solar cells and efficiencies of up to 19.5% have been reached. The solar cells were analyzed on cell and module level and a reduction in Ag consumption for the front electrode of >50%abs could be achieved using the multi-busbar cell design. An additional silver reduction was achieved by replacing the rear side Ag/Al pads with tin pads for the soldering process. These changes in solar cell design reduce significantly the metallization costs and in the same time increase the efficiency. © 2013 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the scientific committee of the SiliconPV 2013 conference

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solar cell improvement by using a multi busbar design as front electrode

The demand for low-priced solar cells with higher efficiencies becomes more necessary to reach grid parity. An optimized solar cell design which uses the same equipment as state of the art solar cells could be easily implemented into solar industry. In this paper an approach for a front side design is discussed, using more busbars than the widely used three busbar design for the solar cell fron...

متن کامل

Highly Efficient Multi-busbar Solar Cells with Ag Nano-particle Front Side Metallization

The main target for a commercially successful solar cell production is to decrease the cost/Watt-peak ratio. In the last years new techniques like fine line screen printing or plating of the front electrode entered the market. These new techniques enable a reduction of Ag or Ag containing paste of the front grid or even a substitution of this metal. Cu is a suited candidate because of its high ...

متن کامل

The multi-busbar design: an overview

The demand for highly efficient photovoltaic modules at low costs leads to new solar cell designs. For enhanced module efficiency the cell efficiency has to be optimized regarding later operation under module conditions. This implies that the interconnected solar cell structure has to be assessed. Commonly the solar cell itself is optimized separately. In this work an easy to implement cell des...

متن کامل

Towards Non-permanent Contacting Schemes for Busbar-free Solar Cells

The multi-busbar solar cell concept using a multitude of wires instead of few busbars is a promising candidate for large scale industrial application for several reasons: it can be combined with the probably upcoming dielectrically passivated back side (PERC) and bifacial concepts, uses less silver and allows for smaller fill factor losses when embedded in a module. However, the electrical char...

متن کامل

High Efficiencies in Nanoscale Poly(3-‎Hexylthiophene)/Fullerene Solar Cells

   A modified morphology was introduced for poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (BHJ) solar cells by thermal and solvent annealing treatments in the presence of hydrophilic-hydrophobic block copolymers. Power conversion efficiency (PCE) plummet was prohibited during both thermal and solvent treatments for all BHJ devices modified wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013